

Uwarunkowania interferometrycznych pomiarów nierówności powierzchni

Dawid Kucharski

Zakład Metrologii i Systemów Pomiarowych Instytut Technologii Mechanicznej Wydział Budowy Maszyn i Zarządzania Politechnika Poznańska

4 czerwca 2018

- 1 Dlaczego powierzchnia jest ważna ?
- Metody pomiaru nierówności powierzchni Dobór metody pomiarowej
- 3 Zakłócenia
- Pomiary interferometryczne
- Obecne badania

6 Literatura

tody pomiaru nierówności powierzch

akłócenia Pomiary interferom

czne Obecne badania Litera

Dlaczego powierzchnia jest ważna ?

- inżynieria precyzyjna,
- produkcja,
- medycyna,
- technologie informacyjne,
- transport,
- wiele innych.

Mechanika [1]

Optyka [2]

letody pomiaru nierówności powierzchni

Zakłócenia 🔹 Pomiary interferome

ryczne Obecne badania Litera

Dlaczego powierzchnia jest ważna ?

Powierzchnia hydrofobowa [4]

Efekt super-hydrofobowy [5]

Szkło samoczyszczące [6]

Metody pomiaru nierówności powierzchni

Klasyfikacja systemów do pomiaru nierówności powierzchni [7]

D. Kucharski (ZMiSP PP)

Uwarunkowania pomiarów interferometrycznych

Metody pomiaru nierówności powierzchni

Norio Taniguchi, On the Basic Concept of 'Nano-Technology', Proc. Intl. Conf. Prod. Eng. Tokyo, Part III, Japan Society of Precision Engineering 1974 [8]

$\mathsf{Dob}\mathsf{ór} = \mathsf{odp.}$ na pytania

- 1 Jaki jest rodzaj powierzchni ?
 - 1 Jakie parametry geometryczne?
 - 2 Jaki rodzaj materiału?
- 2 Rozmiar ?
- **3** Szybkość pomiaru?
- 4 Jaki jest wymagana niepewność pomiaru?
- Jaki budżet ?

Jeśli odpowiedzi na powyższe pytana skłaniają nas do wykorzystania optycznych systemów pomiarowych, wciąż wymagane są odpowiedzi na wiele innych pytań szczegółowych.

Dlaczego powierzchnia jest ważna ? Metody pomiaru nierówności powierzchni Zakłócenia Pomiary interferometryczne Obecne badania Literatura o●

Ograniczenia - rozdzielczość lateralna / przestrzenna

$$r = 0.61 \cdot \frac{\lambda}{NA},\tag{1}$$

$$r = 0.82 \cdot \frac{\lambda}{NA},\tag{2}$$

$$NA = n\sin(\theta). \tag{3}$$

letody pomiaru nierówności powierzchni

Obecne badania Literatura

Zakłócenia

letody pomiaru nierówności powierzchni

Zakłócenia Pomiary interferometryczne

Np. Temperatura

Źródła ciepła (laser, CCD)

Źródła ciepła (CCD)

letody pomiaru nierówności powierzcl

akłócenia Pomiary interferometryczne

rferometryczne Obecne badania Litera

PSI - Phase Shifting Interferometry

letody pomiaru nierówności powierzchr

akłócenia Pomiary interferometryczne

zne Obecne badania Literatu

PSI - Phase Shifting Interferometry

laser diodowy, 2 - kolimator,
 dzielnik wiązki 50/50, 4 opóźniacz fazy, 5 - zwierciadło,
 6 - soczewka, 7 - przedmiot,
 8 - dzielnik polaryzacji, 9-10 detektory [9, 10]

Phase unwrapping

D. Kucharski (ZMiSP PP)

Przykład [11]

Interferometry

Interferometry

Rozdzielczość lateralna

$$ITF(\nu) = \frac{2}{\pi} \left[\phi - \cos(\phi) \sin(\phi) \right], \tag{4}$$
$$\phi = \arccos\left(\frac{\lambda\nu}{2A_N}\right). \tag{5}$$

$$\nu_{0\%} = \frac{2A_N}{\lambda},\tag{6}$$

$$\nu_{50\%} = \frac{A_N}{1.22\lambda}.$$
(7)

+ Abberacja, błąd ogniskowania, wahania natężenia światła ...

Ogniskowanie

SiC ($f = \pm 3 \ \mu m$, $M = 10 \times$, NA = 0.25) [11]

PSI - Phase Shifting Interferometry Źródła światła

Sygnał z mikroskopu interferencyjnego ($\lambda = 550 \pm 20$ nm, $M = 10 \times$, NA = 0.3) [11]

Kalibracja

Wzorzec "gwiazda", $\phi =$ 91.5 μm [13, 14]

Wzorzec "gwiazda", $\phi = 17.5~\mu m~[13,~14]$

Przykładowe wyniki

Obraz interferencyjny [11]

Powierzchnia po analizie [11]

Warstwa magnetyczna dysku (Zemetrics) [11]

Obrazy interferencyjne z udziałem zakrzywionej powierzchni [11]

Schemat mikroskopu w/g CSI [11]

Kierunek pojedycznej wiązki w CSI [11]

CSI - Powłoki epitaksjalne

Sygnał z CSI - pojedyncza powłoka półprzepuszczalna o grubości kilku μm [11]

CSI - Elementy lutowane

Przykład archiwizacji i analizy danych w technice CSI. "Guz" lutowniczy [11]

Podsumowanie

- CSI jest obecnie dominującą techniką w badaniach interferencyjnych.
- W porównaniu z PSI, pozwala na znacznie szersze zastosowania w metrologii tekstury powierzchni ("step heights").
- Dane dla każdego pojedynczego piksela w obrazie, są zbierane w dokładnym punkcie najlepszego skupienia dla tego piksela.
- CSI zapewnia przewagę w zakresie pionowej rozdzielczości (sub-nm), niezależnie od apertury numerycznej lub pola widzenia mikroskopu.
- Technika rozwija się w zakresie badań warstw półprzepuszczalnych i innych analiz struktury powierzchni.

Zakłócenia Pomiary interfe

etryczne Obecne badania Literatura

Obecne badania – T-G PSI

Zdjęcie układu pomiarowego z dn. 10.05.2018

Zdjęcie układu pomiarowego z dn. 10.05.2018

T-G PSI Profiling

Badania tekstury powierzchni

Rozkład radialny intensywności pikseli [9]

Obraz interferencyjny [9]

Badania tekstury powierzchni – wzorzec

Wzorzec okrągłości $\phi = 29,9588 \text{ mm}$

ficial mark: 50776 PTB 12, (Ser.Nr.: 122 / 435); 50778 PTB 12, (Ser.Nr.: 50004)

Badania tekstury powierzchni – wzorzec

Suppl/Customer:	xxx RoundreesBlandard PN111 LSC, Geul 50%, D=1mm point on 0 degree probe		Gage Plan: FN111 R 2mm #01		
Companyint:			Sampie No.: XXXXX		
Drawing No.;			HOMMEL TESTER FORM 4004		
Order No.:					
Remetos:	FORM 4004; FT1 77500 hertzontal; selfak, kubook				
Impector:	Fellel	Date:	231 01 04	Time: 16.08.22	

Certyfikat kalibracji [15]

- ceramiczny wzorzec okrągłości $\phi = 29,9588$ mm;
- odcinek 5000 μ m (5% całego obwodu);
- 383 punkty pomiarowe;
- 20 fps;
- $\omega=1~^{\circ}/s;$
- $\alpha_{\textit{na obr.}} = 400^{\circ};$
- całkowita liczba obrazów 8000.
- Odcinek elementarny 262 μ m;
- 20 punktów pomiarowych.

Badania tekstury powierzchni [16]

Przesunięcia fazowe ϵ . Pomiar ceramicznego wzorca okrągłości $\phi = 29,9588 \text{ mm}$ [16]

Badania tekstury powierzchni [16]

Śledzenie fazy. Pomiar długości d ceramicznego wzorca okrągłości $\phi = 29,9588 \text{ mm}$ [16]

Badania tekstury powierzchni [16]

Tekstura powierzchni ceramicznego wzorca okrągłości $\phi = 29,9588 \text{ mm}$ [16]

Badania tekstury powierzchni [16]

Śledzenie fazy. Pomiar długości d dla wybranego odcinka elementarnego ceramicznego wzorca okrągłości $\phi = 29,9588 \text{ mm} [16]$

Uwarunkowania pomiarów interferometrycznych

Dlaczego powierzchnia jest ważna ?	Metody pomiaru nierówności powierzchni 00	Zakłócenia	Pomiary interferometryczne	Obecne badania	Literatura
T-G PSI					
Badania porównawcze ?					

14,7535

14.7533 -

14.753

14,7530

14.7529 -

0 50 100

E 14,7532

Tekstura powierzchni ceramicznego wzorca okrągłości $\phi = 29,9588$ mm. Pomiar T-G PSI [16]

Zmiana odległości powierzchni ceramicznego wzorca okrągłości $\phi = 29,9588$ mm w funkcji kąta obrotu. Pomiar stykowy (Hommel) [9]

α[°]

150 200 250 300 350

14.75331

14,75301

Analiza korelacji czasowych przesunięć danych [17]

4 czerwca 2018

37 / 47

Analiza korelacji czasowych przesunięć danych [17]

Konstrukcja układu translacyjnego do interferometrycznych pomiarów tekstury powierzchni [18]

Pomiary wzorca chropowatości. Układ translacyjny [9]

Dalsze plany badawcze. Prace

- 1 Obliczenia porównawcze. Analizy interferogramów. Manuscript submitted (2018).
- 2 Przygotowanie manuskryptu przesunięcia czasowe.
- Badania porównawcze tekstury powierzchni. Analizy statystyczne.
- Przygotowanie manuskryptu publikacji (2018) chropowatość/okrągłość.
- Badania wzorców chropowatości w układzie translacyjnym.
- **6** Konstrukcja interferometru porównawczego ?

Ostatni artefakt

Redefinicja kg – inf. z dn. 20.05.2018

#SuperheroDay [19, 20]

#SuperheroDay [21, 20]

Dlaczego powierzchnia jest ważna ?

Metody pomiaru nierówności powierzchni Zakłócenia Pomiary interferometryczne **Obecne badania** Literatura 00

Projekt "Avogadro" Redefinicja kg przez liczbę Avogadro

Laserowe zliczanie pojedynczych atomów SI-28 [22]

Laserowe zliczanie pojedynczych atomów SI-28 [23]

Literatura I

- Applied Nano Surfaces. (2018) Crankshaft. [Online]. Available: http://media.appliednanosurfaces.com/2013/04/crankshaft.png
- Canon Global. (2018) Zoom optics. [Online]. Available: https://shop.usa.canon.com/wcsstore/ExtendedSitesCatalogAssetStore/ef28-300'35-56isusm'1'xl.jpg
- BrakerLink. (2018) Car door. [Online]. Available: https://www.breakerlink.com/blog/wp-content/uploads/2016/02/door.jpg
- [4] H. Knight. (2018) Intelligent windows self-clean and regulate temperature of buildings. [Online]. Available: https://www.theengineer.co.uk/intelligent-windows-self-clean-and-regulate-temperature-of-buildings/
- [5] Balconette. (2018) Hydrophobic glass. [Online]. Available: https://www.balconette.co.uk/content/uploads/ 1fcc0487-179b-4088-931f-868b3d4d890d/contact-of-water-droplet-with-hydrophobic-glass.jpg
- [6] Polypane Glasindustrie N.V. (2018) Self-cleaning glass. [Online]. Available: https://www.polypane.be/data/images/categories/wide/201503270825041v0fn.jpg

Literatura II

- [7] R. Leach, Optical Measurement of Surface Topography, R. Leach, Ed. Berlin, Heidelberg: Springer Science & Business Media, Mar. 2011. [Online]. Available: http://link.springer.com/10.1007/978-3-642-12012-1
- [8] N. Taniguchi, "On the basic concept of nano-technology Proceedings of the International Conference on Production Engineering Tokyo Part II Japan Society of Precision ...," 1974. [Online]. Available: http://scholar.google.comjavascript:void(0)
- [9] D. Kucharski, "Interferometric system for shape deviation measurements," Ph.D. dissertation, Poznan University of Technology, Poznan, Nov. 2015.
- [10] D. Kucharski, F. Meijer, E. Stachowska, and C. J. Jermak, "Method for contactless measurement of deviation of shape by interferometric method," Patent PL405 952 (A1), May, 2015.
- [11] P. de Groot, Optical Measurement of Surface Topography, R. Leach, Ed. Berlin, Heidelberg: Springer Science & Business Media, Mar. 2011. [Online]. Available: http://link.springer.com/10.1007/978-3-642-12012-1
- [12] F. Twyman and A. Green, "Method and apparatus for finishing prisms or lenses or combinations of the same." Patent, 1918. [Online]. Available: http://www.google.com/patents/US1252512

Literatura III

- [13] R. Leach and C. Giusca, Optical Measurement of Surface Topography, R. Leach, Ed. Berlin, Heidelberg: Springer Science & Business Media, Mar. 2011. [Online]. Available: http://link.springer.com/10.1007/978-3-642-12012-1
- [14] M. Xu, T. Dziomba, G. Dai, and L. Koenders, "Self-calibration of scanning probe microscope: mapping the errors of the instrument," *Measurement Science and Technology*, vol. 19, no. 2, p. 025105, 2008.
- [15] "Roundess standard fn 111 calibration certificate."
- [16] M. Michalska, "Ocena zdolności rozdzielczej interferometrycznego układu pomiarowego w badaniach tekstury powierzchni," Master's thesis, Poznan University of Technology, Poznan, 2018 in progress.
- [17] J. Nowak, "Analiza korelacji czasowych przesunięć danych w optycznych badaniach tekstury powierzchni," Master's thesis, Poznan University of Technology, Poznan, 2018 in progress.
- [18] M. Jagodziński, "Konstrukcja układu translacyjnego do interferometrycznych pomiarów tekstury powierzchni," Master's thesis, Poznan University of Technology, Poznan, 2018 in progress.
- [19] National Institute of Standards and Technology. (2018) #superheroday. [Online]. Available: https: //www.facebook.com/usnistgov/photos/a.213811945364.172453.211075745364/10156274309910365/?type=3

Literatura IV

- [20] ——. (2018) Redefining the kilogram, silicon spheres and the international avogadro project. [Online]. Available: https://www.nist.gov/physical-measurement-laboratory/silicon-spheres-and-international-avogadro-project
- [21] —. (2018) #superheroday. [Online]. Available: https: //www.facebook.com/usnistgov/photos/a.213811945364.172453.211075745364/10156274297750365/?type=3
- [22] newscientist.com. (2018) Vacuum transfer advance will help redefine kilogram next year. [Online]. Available: https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2017/01/25174330/c0042786-avogadro'project'silicon' sphere-spl.jpg
- [23] Phys.org. (2018) More precise estimate of avogadro's number to help redefine kilogram. [Online]. Available: https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2015/moreprecisee.jpg

Dlaczego powierzchnia jest ważna ?	Metody pomiaru nierówności powierzchni 00	Zakłócenia	Pomiary interferometryczne	Obecne badania	Literatura

DZIĘKUJĘ ZA UWAGĘ